

The ELECTRO-FARMING™ Concept

Decentralized Co-Generation of Electricity, Hydrogen and Heat from Biomass

Metabolism (per hour) of an ELECTRO-FARM with 1MWe power

SEVEN CLOSED LOOPS with ELECTRO-FARMING™

This is the only cycle with balanced O₀ and H₀O loops: Hydrogen is generated by splitting water in the steam reformer

(Fossile H₂ is converted to H₂O, which is not re-used by splitting it to H₂)

I.Closed - Loop - Biomass

Small EF-plant operating on an area with dedicated biomass; short transport distances, no intermediaries, no fuel inflation, use of biomass wastes depending from crop yields.

Closed - Loop - Fertilizer

Mineral fertilizer from ash

(if no heavy metal contamination in soil, if contaminated \rightarrow soil clean-up and disposal of ash)

II.Closed - Loop - CO.

Using the shoots of the plants for energy conversion

CO. Sequestration

Carbon deposition in soil, increase in humus content, working VII.Generation of Heat against erosion caused by intensive farming

III.Closed - Loop - H_oO

Water (steam) splitting through steamreforming to generate H₂, hydrogen oxidized in fuel cell to H₂O

Water Generation:

Plant cellulosis is a carbohydrate. Energy conversion is generating appr. 0,5 t of H₂O per 1,0 t of biomass.

IV.Closed - Loop - O₂

Photosynthesis is yielding O₂ (shoots and roots) Same amount of O₂ as used in steam reformer (pulse combustors) plus fuel cell.

V.Closed - Loop - H_o

Hydrogen is used at the point of generation and not piped or transported (stationary and mobile fuel cell technologies). No "hydrogen infrastructure" needed.

VI.Closed - Loop - Electricity

Power can be used locally and does not need a high voltage grid system for further distribution.

Local heat source